本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与最新的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以别出心裁的习题安排而著名,书中收入的富于挑战性的习题旨在帮助读者探究数论中的关键概念,同时提供两类习题:一类是计算题;另一类是上机编程练习,这使得读者能够将数学理论与编程技巧实践联系起来。目录前言符号表何谓数论第1章 整数1.1 数和序列1.2 和与积1.3 数学归纳法1.4 斐波那契数1.5 整除性第2章 整数的表示法和运算2.1 整数的表示法2.2 整数的计算机运算2.3 整数运算的复杂度第3章 素数和最大公因子3.1 素数3.2 素数的分布3.3 最大公因子3.4 欧几里得算法3.5 算术基本定理3.6 因子分解法和费马数3.7 线性丢番图方程第4章 同余4.1 同余引言4.2 线性同余方程4.3 中国剩余定理4.4 求解多项式同余方程4.5 线性同余方程组4.6 利用波拉德方法分解整数第5章 同余的应用5.1 整除性检验5.2 万年历5.3 循环赛赛程5.4 散列函数5.5 校验位第6章 特殊的同余式6.1 威尔逊定理和费马小定理6.2 伪素数6.3 欧拉定理第7章 乘性函数7.1 欧拉函数7.2 因子和与因子个数7.3 完全数和梅森素数7.4 莫比乌斯反演第8章 密码学8.1 字符密码8.2 分组密码和流密码8.3 取幂密码8.4 公钥密码8.5 背包密码8.6 密码协议及应用第9章 原根9.1 整数的阶和原根9.2 素数的原根9.3 原根的存在性9.4 指数的算术9.5 用整数的阶和原根进行素性检验9.6 通用指数第10章 原根与整数的阶的应用10.1 伪随机数10.2 埃尔伽莫密码系统10.3 电话线缆绞接中的一个应用第11章 二次剩余11.1 二次剩余与二次非剩余……第12章 十进制分数与连分数第13章 某些非线性丢番图方程第14章 高斯整数附录参考文献
暂无简介
本书聚焦于使用英特尔的GPU来进行视频加速处理的方案。 首先介绍视频处理的理论基础,然后介绍英特尔的GPU处理器架构,接着介绍英特尔推荐的视频处理开发套件MediaSDK的环境搭建、框架和功能支持,以及开源框架的环境如何在英特尔的平台上搭建等。 接下来是实战的部分,首先介绍视频处理中的两个技术难点————内容管理和码率控制,接下来是编程实战,并针对开发者反馈较多的情况,介绍性能评测和性能优化的部分以及视频会议中视频处理的应用。
本站基于Calibre构建,感谢开源界的力量。所有资源搜集于互联网,如有侵权请邮件联系。
Github | Docker | Library | Project
本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。
本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。
本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。
经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与最新的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以别出心裁的习题安排而著名,书中收入的富于挑战性的习题旨在帮助读者探究数论中的关键概念,同时提供两类习题:一类是计算题;另一类是上机编程练习,这使得读者能够将数学理论与编程技巧实践联系起来。
目录
前言
符号表
何谓数论
第1章 整数
1.1 数和序列
1.2 和与积
1.3 数学归纳法
1.4 斐波那契数
1.5 整除性
第2章 整数的表示法和运算
2.1 整数的表示法
2.2 整数的计算机运算
2.3 整数运算的复杂度
第3章 素数和最大公因子
3.1 素数
3.2 素数的分布
3.3 最大公因子
3.4 欧几里得算法
3.5 算术基本定理
3.6 因子分解法和费马数
3.7 线性丢番图方程
第4章 同余
4.1 同余引言
4.2 线性同余方程
4.3 中国剩余定理
4.4 求解多项式同余方程
4.5 线性同余方程组
4.6 利用波拉德方法分解整数
第5章 同余的应用
5.1 整除性检验
5.2 万年历
5.3 循环赛赛程
5.4 散列函数
5.5 校验位
第6章 特殊的同余式
6.1 威尔逊定理和费马小定理
6.2 伪素数
6.3 欧拉定理
第7章 乘性函数
7.1 欧拉函数
7.2 因子和与因子个数
7.3 完全数和梅森素数
7.4 莫比乌斯反演
第8章 密码学
8.1 字符密码
8.2 分组密码和流密码
8.3 取幂密码
8.4 公钥密码
8.5 背包密码
8.6 密码协议及应用
第9章 原根
9.1 整数的阶和原根
9.2 素数的原根
9.3 原根的存在性
9.4 指数的算术
9.5 用整数的阶和原根进行素性检验
9.6 通用指数
第10章 原根与整数的阶的应用
10.1 伪随机数
10.2 埃尔伽莫密码系统
10.3 电话线缆绞接中的一个应用
第11章 二次剩余
11.1 二次剩余与二次非剩余
……
第12章 十进制分数与连分数
第13章 某些非线性丢番图方程
第14章 高斯整数
附录
参考文献